App Enabler Documentation
Release 0.3.0

Nephila

Nov 09, 2023

CONTENTS

App Enabler 1
1.1 Description o o o e e e e e e e e e e e e e e 1

LI Keypoints o o e e e e e e e e e 1

112 CaveatS o o o e e e e e e e e e e e e e 1

1.1.3 Compatible packages« o o i e e e e e e e e e e e e 2
Usage 3
2.1 Installation e e e 3
22 Commands e e e e e e e e 3
2.3 Sampleexecution flow L. e e e e e 3
2.4 Application configurationo e 4
2.5 Applyconfigurations L L. oL e e e e e e e e 4
2.6 Application Installation 4
Limitations 5
3.1 SEttingS.py e e e e 5
32 USSPy . . e 5
Addon configuration specification 7
4.1 addonjsono e e e e e e e e e 7
4.2 Extra configuration files specifications oL 7

4.2.1 Attributes L e e e 7

422 Merge Strate@y . .« « v v v e 8

423 Samplefile e e e 8
43 Packaging e e e e 9
Planned features 11
API 13
6.1 Commands e e e e e e 13

6.1.1 django-enabler e 13
6.2 CLIL e 15
6.3 Loaders e 16
6.4 Patchers. L e e 16
History 19
7.1 03.0(2023-11-09) oo e e e e 19

T11 0 Features v o i e e e e e e e e 19
7.2 0.2.0(2020-12-27) . . . o e e e e e e 19

72,1 Features o i it e e e e e e e 19

722 Bugfixes e 19

7.3 0.1.1(2020-12-21) . . o o o e

T30 Features o o e e e e e e
732 Bugfixes e e e e e
74 0.1.0(2020-12-20) o e e
TAT FeatUres i i e e e e e e e e e e e e
7.4.2 Improved Documentation

8 Indices and tables
Python Module Index

Index

20

21

23

25

CHAPTER
ONE

APP ENABLER

1.1 Description

PoC autoconfigurator for django applications

django-app-enabler goal is to reduce the configuration of a django application to a one command operation to ease
using django applications, both for newcomers and expert developers.

As configuring a django application can be both boring (as 90% are the usual steps editing settings.py and urls.
py) and complex (as it’s easy to overlook one vital configuration parameter), replacing this with a single command
sounds like a real benefit.

1.1.1 Key points

 zero-knowledge tool to enable and configure django applications in a django project
* rely on specification file shipped by the target application to patch django project configuration

* not a replacement for existing package or dependencies managers (pip / poetry / pipenv / ...)

1.1.2 Caveats

* Project is currently just a proof of concept

» No formal specification or documentation exist (yet) for addon configuration file

* A lot of restrictions regarding the settings.py and urls.py files are currently in place
* Not all standard django settings options are currently supported

See usage for more details.

https://gitter.im/nephila/applications
https://pypi.python.org/pypi/django-app-enabler
https://pypi.python.org/pypi/django-app-enabler
https://github.com/nephila/django-app-enabler
https://coveralls.io/r/nephila/django-app-enabler?branch=master
https://codeclimate.com/github/nephila/django-app-enabler
https://pypi.python.org/pypi/django-app-enabler/:alt:License
https://django-app-enabler.readthedocs.io/en/latest/usage.html

App Enabler Documentation, Release 0.3.0

1.1.3 Compatible packages

Up-to-date list of compatible packages

2 Chapter 1. App Enabler

https://pypi.org/search/?q="django-app-enabler+addon"

CHAPTER
TWO

USAGE

django-app-enabler allow application supporting Addon configuration specification to be installed and configured
automatically in the current django project.

2.1 Installation

pip install django-app-enabler

2.2 Commands

e apply <path_to_json> <path_to_json>: Apply configuration from json files
* enable <module_name>: Configure an application

e install <package-name>: Install and configure an application

2.3 Sample execution flow

django-enabler install djangocms-blog~=1.2.1
python manage.py migrate

After this the django application is configured and functional.

Additional configuration steps might be required according to the application features and support level and must be
documented by the application itself.

Alternatively you can execute the module itself:

[python -mapp_enabler install djangocms-blog~=1.2.1

App Enabler Documentation, Release 0.3.0

2.4 Application configuration

The core of django-app-enabler is its Django configuration patching engine.

The general concept is that once a django package is installed, app-enabler can be run from the project root and the
project is automatically updated with the minimal configuration required by the application to run (or any superset of
this definition).

Applied configurations are declared by the target application in a addon.json file included in the python package.

Example:

[django—enabler enable djangocms_blog

See Limitations for limitations and caveats.

2.5 Apply configurations

django-app-enabler can also apply configuration from arbitrary json files not included in any Django application.

Each configuration file must comply with Extra configuration files specifications.

Note: Django settings and urlconf are patched unconditionally. No attempt to verify that applications declared
in installed_apps or added to the urlconf are available in the virtualenv is made.

Example:

[django—enabler apply /path/to/configl.json /path/to/config2.json

See Limitations for limitations and caveats.

2.6 Application Installation

As a convenience django-app-enabler can execute pip install on your behalf, though step this is not required.
The install command will both install the package and enable it.

Installation is executed via the install command which a

[dj ango-enabler install djangocms-blog~=1.2.0

Note: django-app-enabler is not intended as a replacement (or sidekick) of existing package / dependencies man-
ager. The installation step is only intended as a convenience command for those not sticking to any specific workflow.
If you are using anything than manual pip to install packages, please stick to it and just use Application configuration.

4 Chapter 2. Usage

CHAPTER
THREE

LIMITATIONS

Paching features have currently the following limitations:

3.1 settings.py

¢ Only single file settings.py are currently supported. In case you are using splitted settings, the only way to
use django-app-enabler is to have at least an empty INSTALLED_APPS list in the settings file declared in
DJANGO_SETTINGS_MODULE.

* Settings with literal or “simple” lists and dictionaries (like CACHE, DATABASES, AUTH_PASSWORD_VALIDATORS)
are supported, the most notable exception is TEMPLATES in which you cannot add / replace options in a single
template engine. Any custom setting is supported.

* While extra requirements will be installed when including them in the package argument (as in
djangocms-blog[search]), they will not be added to INSTALLED_APPS and they must be added manually
after command execution.

3.2 urls.py

¢ Only single file urls.py are currently supported. In case you are using splitted settings, the only way to use
django-app-enabler is to have at least an empty urlpatterns list in the settings.ROOT_URLCONF file.

App Enabler Documentation, Release 0.3.0

6 Chapter 3. Limitations

CHAPTER
FOUR

ADDON CONFIGURATION SPECIFICATION

django-app-enabler support can be enabled by adding a addon.json to any django application (see below for the
structure).

See Limitations for limitations and caveats.

4.1 addon.json

addon. json is the only configuration file needed to support django-app-enabler and it must provide at least the
minimal setup to make the application up an running on a clean django project.

Warning: The file must be included in root of the first (alphabetically) module of your application package. See
Packaging for details.

4.2 Extra configuration files specifications

Extra configuration files (applied via Apply configurations) must conform to the same specifications below with two
exceptions:

* all attributes are optional (i.e.: they can be completely omitted)

* the json file can contain a single object like for the addon. json case, or a list of objects conforming to the
specifications.

4.2.1 Attributes

The following attributes are currently supported:
* package-name [required]: package name as available on PyPji;

e installed-apps [required]: list of django applications to be appended in the project INSTALLED_APPS set-
ting. Application must be already installed when the configuration is processed, thus they must declared as
package dependencies (or dependencies of direct dependencies, even if this is a bit risky);

 urls [optional]: list of urlconfs to be added to the project ROOT_URLCONF. List can be empty if no url configu-
ration is needed or it can be omitted.

Each entry in the list must be in the [<patten>,<include-dotted-path>] format:

— <pattern> must be aDjango path() pattern string, it can be empty (to add the urlconf to the root)

https://django.readthedocs.io/en/latest/ref/urls.html#django.urls.path

App Enabler Documentation, Release 0.3.0

— <include-dotted-path> must be a valid input for Django include() function;
* settings [optional]: A dictionary of custom settings that will be added to project settings verbatim;

* message [optional]: A text message output after successful completion of the configuration;

Attribute format

installed-apps and settings values can have the following formats:
e literal (string, int, boolean): value is applied as is
¢ dict with the following structure:

— value: Any (required), the setting value

position: int, if set and the target setting is a list, value is inserted at position

next: str, name of an existing item before which the value is going to be inserted

— key: str, in case value is a dictionary, the dictionary key to be used to match existing settings value
for duplicates and to match the next value

4.2.2 Merge strategy
settings items not existing in the target project settings are applied without further changes, so you can use whatever
structure is needed.

settings which already exists in the project and installed-apps configuration are merged with the ones already
existing according to this strategy:

* setting does not exist -> custom setting is added verbatim

* setting exists and its value is a literal -> target project setting is overridden

* setting exists and its value is a list -> custom setting is merged:
— if the custom setting is a literal -> its value is appended to the setting list
— if it’s a dictionary (see format above) ->

% if next is defined, a value matching the next value is searched in the project setting and the
custom setting value is inserted before the next element or at the top of the list if the value
is not found; in case value (and items in the project settings) are dictionaries (like for example
AUTH_PASSWORD_VALIDATORS), a key attribute must be provided as a lookup key;

* if position is defined, the custom setting value is inserted at that position;

In any case, if a value is already present, is not duplicated and is simply ignored.

4.2.3 Sample file

{
"package-name": "djangocms-blog",
"installed-apps": [
"filer",

"easy_thumbnails",
"aldryn_apphooks_config",
"parler",

(continues on next page)

8 Chapter 4. Addon configuration specification

https://django.readthedocs.io/en/latest/ref/urls.html#django.urls.include

App Enabler Documentation, Release 0.3.0

"taggit",
"taggit_autosuggest",
"meta",
"djangocms_blog",
"sortedm2m"

] ’

"settings": {
"META_SITE_PROTOCOL": "https",
"META_USE_SITES": true,
"MIDDLEWARE": [

"django.middleware.gzip.GZipMiddleware",

(continued from previous page)

{"value": "django.middleware.http.ConditionalGetMiddleware", "position": 2},
{
"value": "django.middleware.locale.LocaleMiddleware",
"next": "django.middleware.common.CommonMiddleware",
e
i
"AUTH_PASSWORD_VALIDATORS": [
{
"value": {
"NAME": "django.contrib.auth.password_validation.
—NumericPasswordValidator",
e
"next": "django.contrib.auth.password_validation.
—UserAttributeSimilarityValidator",
"key": "NAME",
}!
i
1
"urls": [
["", "djangocms_blog.taggit_urls"]
1,
"message": "Please check documentation to complete the setup”

4.3 Packaging

TBA

4.3. Packaging

App Enabler Documentation, Release 0.3.0

10 Chapter 4. Addon configuration specification

CHAPTER
FIVE

PLANNED FEATURES

» Support extra-requirements issue-6
* Support Django settings split in multiple files issue-7

* Support Django urlconf split in multiple files issue-8

11

https://github.com/nephila/django-app-enabler/issues/6
https://github.com/nephila/django-app-enabler/issues/7
https://github.com/nephila/django-app-enabler/issues/8

App Enabler Documentation, Release 0.3.0

12 Chapter 5. Planned features

CHAPTER
SIX

6.1 Commands

6.1.1 django-enabler

Click entrypoint.

API

[django—enabler [OPTIONS] COMMAND [ARGS]...

Options

--verbose

apply

Apply configuration stored in one or more json files.
CONFIG_SET: Path to configuration files

param click.core.Context context
Click context

param list config_set
list of paths to addon configuration to load and apply

[django—enabler apply [OPTIONS] [CONFIG_SET]...

Arguments

CONFIG_SET

Optional argument(s)

13

App Enabler Documentation, Release 0.3.0

enable

Enable the application in the current django project.
APPLICATION: Application module name (example: ‘djangocms_blog’)

param click.core.Context context
Click context

param str application
python module name to enable. It must be the name of a Django application.

[django—enabler enable [OPTIONS] APPLICATION

Arguments

APPLICATION

Required argument

install

Install the package in the current virtualenv and enable the corresponding application in the current project.

PACKAGE: Package name as available on PyPi, or rather its requirement string.
Accepts any PEP-508 compliant requirement.
Example: “djangocms-blog~=1.2.0”

param click.core.Context context
Click context

param str package
Name of the package to install

param str pip_options
Additional options passed to pip

[django—enabler install [OPTIONS] PACKAGE

Options

--pip-options <pip_options>
Additional options passed as is to pip

14 Chapter 6. API

App Enabler Documentation, Release 0.3.0

Arguments

PACKAGE
Required argument

6.2 CLI

app_enabler.enable.apply_configuration(application_config: Dict(str, Any])
Enable django application in the current project

Parameters
application_config (dict) — addon configuration

app_enabler.enable.apply_configuration_set (config_set: List[Path], verbose: bool = False)
Apply settings from the list of input files.

Parameters
» config_set (1ist) - list of paths to addon configuration to load and apply
» verbose (bool) — Verbose output (currently unused)

app_enabler.enable.enable_application(application: str, verbose: bool = False)
Enable django application in the current project

Parameters

* application (str) — python module name to enable. It must be the name of a Django
application.

» verbose (bool) — Verbose output (currently unused)

app_enabler.enable.output_message (message: str)
Print the given message to stdout.

Parameters
message (str) — Success message to display

app_enabler.enable.verify_installation(settings: LazySettings, application_config: Dict[str, Any]) —
bool

Verify that package installation has been successful.
Parameters
» settings (django.conf.LazySettings) — Path to settings file
* application_config (dict)— addon configuration

app_enabler.install.get_application_from_package (package: str) — str| None
Detect the first in alphabetical order module provided by a package.

This approach is a bit simplistic, but as we only need this to get the addon. json file specified by this package,
we can easily enforce this restriction.

Parameters
package (str) — package name (or rather its requirement string). It can be anything complying
with PEP508

Returns
main (first) module name; if None, package is not available in the current virtualenv

6.2. CLI 15

https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str

App Enabler Documentation, Release 0.3.0

app_enabler.install.install (package: str, verbose: bool = False, pip_options: str ="")
Install the package.

Installation is done via pip executed as a subprocess to ensure maximum compatibility.
Parameters
» package (str) — Package name
» verbose (bool) — Verbose output

* pip_options (str) — Additional options passed to pip

6.3 Loaders

app_enabler.django.get_settings_path(setting: LazySettings) — str
Get the path of the django settings file path from the django settings object.

Parameters
setting (django.conf.LazySettings) — Django settings object

Returns
path to the settings file

app_enabler.django.get_urlconf_path(serting: LazySettings) — str
Get the path of the django urlconf file path from the django settings object.

Parameters
setting (django.conf.LazySettings) — Django settings object

Returns
path to the settings file

app_enabler.django.load_addon(module_name: str) — Dict[str, Any] | None
Load addon configuration from json file stored in package resources.

If addon has no configuration, return None.

Parameters
module_name (str) — name of the python module to load as application

Returns
addon configuration

6.4 Patchers

class app_enabler.patcher.DisableExecute
Patch the manage . py module to remove the execute_from_command_line execution.
visit_Expr(node: AST) — Any
Visit the Expr node and remove it if it matches 'execute_from_command_line'.

app_enabler.patcher.monkeypatch_manage (manage_file: str) — code

Patch manage. py to be executable without actually running any command.

By using ast we remove the execute_from_command_line call and add an unconditional call to the main
function.

16 Chapter 6. API

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/ast.html#ast.AST
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#str

App Enabler Documentation, Release 0.3.0

Parameters
manage_file (str) — path to manage.py file

Returns
patched manage.py code

app_enabler.patcher.setup_django()

Initialize the django environment by leveraging manage . py.

This works by using manage.py to set the DJANGO_SETTINGS_MODULE environment variable for django.

setup () to work as it’s unknown at runtime.

This should be safer than reading the manage . py looking for the written variable as it rely on Django runtime

behavior.

Manage.py is monkeypatched in memory to remove the call “execute_from_command_line”” and executed from

memory.

app_enabler.patcher.update_setting(project_setting: str, config: Dict[str, Any])
Patch the settings module to include addon settings.

Original file is overwritten. As file is patched using AST, original comments and file structure is lost.

Parameters
* project_setting (str) — project settings file path
» config (dict) — addon setting parameters

app_enabler.patcher.update_urlconf (project_urls: str, config: Dict[str, Any])
Patch the ROOT_URLCONF module to include addon url patterns.

Original file is overwritten. As file is patched using AST, original comments and file structure is lost.

Parameters
* project_urls (str) — project urls.py file path

» config (dict) — addon urlconf configuration

6.4. Patchers

17

https://docs.python.org/3/library/stdtypes.html#str
https://django.readthedocs.io/en/latest/ref/applications.html#django.setup
https://django.readthedocs.io/en/latest/ref/applications.html#django.setup
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict

App Enabler Documentation, Release 0.3.0

18 Chapter 6. API

CHAPTER
SEVEN

7.1 0.3.0 (2023-11-09)

7.1.1 Features

» Improve merge strategy to support all the basic standard Django settings (#5)
* Add support for external configuration json (#9)

» Upgrade to Django 3.2/4.2 (#32)

¢ Switch to Coveralls Github action (#56)

* Migrate to bump-my-version (#58)

7.2 0.2.0 (2020-12-27)

7.2.1 Features

* Add CLI utility (#20)

7.2.2 Bugfixes

* Close resource_stream file pointer (#19)
* Fix importing include multiple times in urlconf (#21)

* Add test to verify no multiple urlconf are added (#25)

7.3 0.1.1 (2020-12-21)

7.3.1 Features

¢ Add codeq] action (#15)

HISTORY

19

App Enabler Documentation, Release 0.3.0

7.3.2 Bugdfixes

* Fix errors with urlconf patching (#17)

7.4 0.1.0 (2020-12-20)

Initial release

7.4.1 Features

¢ Add install command (#1)

e Add tests (#2)

¢ Add support for message addon config parameter (#11)
7.4.2 Improved Documentation

* Improve documentation (#1)

20

Chapter 7. History

CHAPTER
EIGHT

INDICES AND TABLES

* genindex
* modindex

¢ search

21

App Enabler Documentation, Release 0.3.0

22 Chapter 8. Indices and tables

a

app_enabler.cli, 15
app_enabler.django, 16
app_enabler.enable, 15
app_enabler.install, 15
app_enabler.patcher, 16

PYTHON MODULE INDEX

23

App Enabler Documentation, Release 0.3.0

24 Python Module Index

Symbols
--pip-options
django-enabler-install command line
option, 14
--verbose
django-enabler command line option, 13

A

app_enabler.cli

module, 15
app_enabler.django
module, 16
app_enabler.enable
module, 15
app_enabler.install
module, 15
app_enabler.patcher
module, 16
APPLICATION
django-enabler-enable command line
option, 14
apply_configuration() (in module
app_enabler.enable), 15
apply_configuration_set() (in module
app_enabler.enable), 15
C
CONFIG_SET
django-enabler-apply command line
option, 13

D

DisableExecute (class in app_enabler.patcher), 16

django-enabler command line option
--verbose, 13

django-enabler-apply command line option
CONFIG_SET, 13

django-enabler-enable command line option
APPLICATION, 14

django-enabler-install command line option
--pip-options, 14
PACKAGE, 15

INDEX

E

enable_application() (in module
app_enabler.enable), 15

get_application_from_package() (in module
app_enabler.install), 15

get_settings_path() (in module

app_enabler.django), 16
get_urlconf_path() (in module app_enabler.django),
16

install Q) (in module app_enabler.install), 15

L

load_addon() (in module app_enabler.django), 16

M

module
app_enabler.cli, 15
app_enabler.django, 16
app_enabler.enable, 15
app_enabler.install, 15
app_enabler.patcher, 16
monkeypatch_manage()
app_enabler.patcher), 16

(in module

O

output_message () (in module app_enabler.enable), 15

F)

PACKAGE
django-enabler-install command line
option, 15

S

setup_django () (in module app_enabler.patcher), 17

U

update_setting() (in module app_enabler.patcher),
17

25

App Enabler Documentation, Release 0.3.0

update_urlconf() (in module app_enabler.patcher),
17

\Y

verify_installation() (in module
app_enabler.enable), 15

visit_Expr() (app_enabler.patcher.DisableExecute
method), 16

26

Index

	App Enabler
	Description
	Key points
	Caveats
	Compatible packages

	Usage
	Installation
	Commands
	Sample execution flow
	Application configuration
	Apply configurations
	Application Installation

	Limitations
	settings.py
	urls.py

	Addon configuration specification
	addon.json
	Extra configuration files specifications
	Attributes
	Attribute format

	Merge strategy
	Sample file

	Packaging

	Planned features
	API
	Commands
	django-enabler
	apply
	enable
	install

	CLI
	Loaders
	Patchers

	History
	0.3.0 (2023-11-09)
	Features

	0.2.0 (2020-12-27)
	Features
	Bugfixes

	0.1.1 (2020-12-21)
	Features
	Bugfixes

	0.1.0 (2020-12-20)
	Features
	Improved Documentation

	Indices and tables
	Python Module Index
	Index

